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Abstract
Scattering techniques with x-rays or neutrons are most effective for studying
domain and domain wall structures on a mesoscopic scale. For small domain
sizes and small strains between adjacent domains, coherence effects can give
rise to significant modifications of the scattering intensity distribution which
cannot generally be neglected. Additional or missing peaks, peak shifts
and peak narrowing can lead to false conclusions concerning assignments
to multiple phases, lower or higher symmetries, wrong lattice constants and
domain sizes, respectively. This is demonstrated by examples calculated with a
simple scattering theory outlined.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Domain structures arising from structural phase transitions play an important role in the
characteristics of solids. In ferroelectric and ferroelastic materials they determine their
physical properties; in minerals they contain information about the thermal history of rocks,
etc. Salje (1990) gives a comprehensive overview of the formation and appearance of such
microstructures consisting of (twin) domains and the walls between them. Experimentally they
may be studied by optical, electron microscopical or other methods. The most complete and
reliable information is, however, obtained from non-destructive diffraction methods using x-
rays or neutrons. A recent review on the application of these latter methods was presented by
Hayward and Salje (2005), where references to the original literature may also be found.

The corresponding diffraction theory has been worked out and discussed by several authors
using either direct analytical solutions or applying numerical simulations. A general (but
unspecific) formulation was outlined by Boysen (1995) using the concept of Fourier transforms
and convolutions. There it was also pointed out that the general formulae for the scattering
intensities contain interference terms due to coherence effects between adjacent domains and
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domain walls. As will be seen below, for planar interfaces the diffraction problem can be
regarded as a stacking of ordered planes, where the interface between adjacent domains forms
a stacking fault. Hence, among others (see Jagodzinski and Frey 1996), the general diffraction
theory for crystals with planar faults worked out by Cowley (1976) could be applied. Cowley
and Au (1978) have already emphasized the importance of coherence effects in the study of
microtwins on a mesoscopic scale of several hundreds of angstroms. A detailed diffraction
theory for a pair of twin domains was developed by Bruce (1981) and extended by Andrews
and Cowley (1986), who considered both an infinitely thin domain wall and an extended wall
with constant lattice spacing. In real samples, however, one has to take into account a variation
of the lattice spacing within the walls due to the relaxation of strains (Salje 1990). A widely
accepted form of the variation of the strain within the wall was derived from continuum elastic
theory by Barsch and Krumhansl (1984):

e(x) = e0 tanh(x/W ), (1)

where e0 is the strain deep within the proper domains, 2W can be defined as the width of
the wall and x is the coordinate perpendicular to the wall. This relation generally applies
for small strains; for larger strains higher-order correction terms have been given by Jacobs
(1985). Although the validity of the continuum approach may be (and has been) questioned
for small wall widths of only a few lattice constants (usually less than 6; see the compilation
of Hayward and Salje 2005), (1) will be used in the following for simplicity, since the main
objectives of this work are the coherence aspects of the scattering, which are only little affected
by the actual form of the strain variation. Indeed (1) has been applied by most authors for the
analysis of experimental diffraction data. Apart from numerical simulation studies, simplified
analyses were presented by Taylor and Swainson (1998) and Boysen (2005) for the case of
powder diffraction. These authors have calculated the probability densities of the occurrences
of the different unit cell orientations or lattice spacing, respectively, by differentiation of (1)
and summed up the corresponding intensities. This approach ignores the coherence effects
and may be justified in real systems, if one takes into account possible variations of domain
sizes, wall widths, the existence of rough interfaces, dislocations, defects, etc, which all tend
to smear out the coherence between individual pairs. In fact, these approximations have been
quite successful in describing the asymmetry and anisotropic broadening of the peaks observed
experimentally. As will be shown, however, another requirement is that the domain sizes and
strains should not be too small, since otherwise coherence effects must not be neglected.

Surprisingly, in spite of the fact that the diffraction theory is well known, the inherent
interference effects seem to have been overlooked or ignored in many interpretations of
experimental data. This has recently been demonstrated again by Khoshnevisan et al (2002)
in a study of the tetragonal to orthorhombic phase transition in YBCO by powder diffraction
methods. By analytical and simulation studies they found that for specific values of the domain
sizes (lateral extension) and strains, additional peaks between twin-related reflection pairs can
show up, which may be misinterpreted as arising from the high-symmetry structure, which
is in fact not present in the sample as a separate phase. The intention of this contribution
is to rationalize these effects. To do this, the diffraction theory has been reformulated by
separating the contributions from the domains, the wall and the interference term. This can
be done analytically for infinitely thin domain walls, and this will be the main concern in
the following. Additional effects due to finite wall extensions will briefly be discussed via
numerical calculations. It will be shown that indeed additional or fewer peaks and shoulders
as well as peak shifts and narrowing may arise under certain circumstances, which can lead
to erroneous assignments to multiple phases, lower or higher symmetries and wrong lattice
constants and domain sizes, respectively.
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(a) (b)

Figure 1. (a) Model of two twin-related domains separated by a single interface plane (dotted
line). The arrows indicate the shifts of the well-ordered planes parallel to the wall. For illustration
purposes the strain has been exaggerated unrealistically. (b) Reciprocal lattices corresponding to (a).
High-symmetry reflection positions are marked by (green) circles on the square grid. The symbols
are explained in the text.

2. Scattering theory

As mentioned, for simplicity the discussion will be restricted to the general characteristics
of the interference terms. Therefore, the scattering theory will be outlined only for a simple
monatomic structure, i.e. the variation of the structure factor along the scattered intensity as
well as the influence of the instrumental resolution function (which will smear out the small
side maxima seen in the figures below) will be neglected. Moreover, the model consists of only
two domains separated by a single wall. If the domains are spaced very regularly, additional
satellite peaks may appear. All this has to be kept in mind when trying to apply the derived
formulae to any real situation.

First we consider the case of an infinitely thin domain wall. Figure 1(a) shows the model
of two twin domains; figure 1(b) shows the corresponding reciprocal lattices. For illustrative
purposes we refer to two tetragonal domains arising from a phase transition from a parent
cubic structure with the domains separated by {101} walls. We define a coordinate system i
perpendicular to the wall, j parallel to the wall and k perpendicular to the drawing plane. As can
be seen, the model can be regarded as consisting of well-ordered planes extended along j and k
(with translation periods �y and �z) stacked along i with constant spacing �x but shifted along
j by �v , the latter being reversed at the twin boundary (indicated by the arrows in figure 1(a)).
Then the lattice points are located at rl = n�x i + n�vj + n′�yj + n′′�zk for the left domain,
rr = n�x i − n�vj + n′�yj + n′′�zk for the right domain and r0 = 0 + n′�yj + n′′�zk
for the single interface plane (the domain wall). In our tetragonal example the shifts are
�x = ac/�y, �v = a2/�y and �y = √

a2 + c2. Similar relations can easily be derived
for other geometries, such that the � can also be taken as some general values in the following.
Assuming large extensions of the planes parallel to the wall, the structure factor of these planes
can be calculated separately by summations over n′ and n′′ leading to the corresponding lattice
functions in k and l, i.e. the reflections are ‘sharp’ along j and k. The Miller indices h, k and l
of the chosen coordinate system are defined with respect to the high-symmetry state (for which
�x = �v = �y/2) with reciprocal lattice axes along i, j and k in units of 1/�x , 1/�y and
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1/�z , respectively (see figure 1(b)). Hence k and l can assume only integer values, while h is
a continuous variable. In our illustrative example

h = (hl/rc
2 ∓ ll/ra

2)/(a2 + c2) and k = (±hl/r + ll/r), (2)

where hl/r and ll/r are the usual tetragonal indices and the upper and lower signs refer to the left
and right domain, respectively.

Since the intensity varies only along h, we have to treat only a simple one-dimensional
problem. The corresponding structure factor can be separated into three terms, the summations
over both domains and the wall:

F(h) =
−1∑

n=−N

exp[2π i(n�xξ + n�vη)] +
N∑

n=1

exp[2π i(n�xξ − n�vη)] + 1, (3)

where ξ = h/�x and η = k/�y . N is the number of planes in each domain of equal size
(length) L = N�x and 2N + 1 is the total number of planes. The first two terms can be
evaluated in the usual way involving the (roots of) Laue functions of order N (times the phase
factors governing the interference effects):

Sl = sin[π N(�xξ + �vη)]
sin[π(�xξ + �vη)] and Sr = sin[π N(�xξ − �vη)]

sin[π(�xξ − �vη)] . (4)

The intensity is given by the absolute square F F∗ and can be separated into four terms:

I = S2
l + S2

r + 1 + Sint. (5)

The first three terms are the squares of the three terms in (3), i.e. S2
l and S2

r are the intensities
from both domains separately and ‘1’ is the (constant) intensity from the interface (twin plane).
The interference term arises from the remaining cross products and is given by

Sint = 2{SlSr cos[2π(N + 1)�xξ ] + Sl cos[π(N + 1)(�xξ + �vη)]
+ Sr cos[π(N + 1)(�xξ − �vη)]}

which can be simplified to

Sint = 2{S′
l S

′
r cos[2π N�xξ ] − 1}, (6)

where S′
l and S′

r are Laue functions of order N + 1. In terms of h = ξ�x and k = η�y ,

Sint(h) = 2

{
sin[π(N + 1)(h + rk)]

sin[π(h + rk)]
sin[π(N + 1)(h − rk)]

sin[π(h − rk)] cos(2π Nh) − 1

}
, (7)

where r = �v/�y ≈ (1 + e)/2 is related to the strain defined as e = (�v − �x)/�x .
This function has maxima and minima leading to the addition/subtraction of intensity

to/from the Laue terms S2
l and S2

r having their maxima at hl/r = m ± rk, or, in terms of
the strain, hl/r = m ± e

2 k for k even and hl/r = m + 1
2 ± e

2 k for k odd with m = integer
(cf figure 1(b)). Since Sint is periodic in h, it is sufficient to consider only small regions (some
of them encircled in figure 1(b)) around the positions of the high-symmetry reflections h0 = m
or m + 1

2 for k even or odd, respectively. Then with �h = h − h0

Sint(�h) = 2

{
sin[π(N + 1)(�h + e

2 k)]
sin[π(�h + e

2 k)]
sin[π(N + 1)(�h − e

2 k)]
sin[π(�h − e

2 k)] cos(2π N�h) − 1

}
, (8)

which is symmetric around �h = 0 and can be confined to |�h| � ek. For very large N
the relative contribution of Sint is small compared to S2

l and S2
r (of the order of 1/N) and may

be neglected in most practical situations, i.e. the usual incoherent superposition of intensities
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Figure 2. Same as figure 1(a), but with a finite extension of the domain wall (dotted lines).

is sufficient to describe experimental data in this case. This is no longer true if N becomes
smaller. There is always a maximum at �h = 0 with intensity

Sint(0) = 2

{
sin2[π(N + 1) e

2 k]
sin2[π e

2 k] − 1

}
, (9)

which may become very large and even exceed that of the proper twin reflections (whose
intensities are ∝N2) for small values of Nek (less than one to be specific), i.e. small domain
extensions, small strains and not too large k. Moreover, further maxima of comparable
intensities not coinciding with hl/r or h0 may appear. For a typical strain of e ≈ 0.02,
N ≈ 1/ek may be as large as about 50, corresponding to a domain size of several hundreds
of angstroms. Clearly, the coherence effects become less important with increasing k. All this
will be demonstrated in the examples below.

The case of a finite extension of the domain wall with a strain variation according to (1)
is illustrated in figure 2. There are still ordered planes along j and k and the stacking period
�x along i is constant, but the shifts along j are modified within the wall. The lattice points
are now given by r = n�x i + [±n�x + u(n)]j + n′�yj + n′′�zk, where the upper and lower
signs correspond to the left and right domain, respectively. The displacements relative to the
high-symmetry lattice are obtained by integration of (1):

u(n) = e0W ln cosh(x/W ) = e0nw�x ln cosh(n/nw), (10)

where the width of the wall W = nw�x is counted in units of �x . As before, the reflections
are ‘sharp’ along j and k, and the structure factor along i

F(h) =
N∑

n=−N

exp

{
2π i

[
nh + �x

�y
(±n + e0nw ln cosh(n/nw))k

]}
(11)

could be separated into contributions from the domains, the domain wall and the interference
term, but no simple solution as in the previous case was found. Therefore, only some numerical
calculations using (11) will be shown to demonstrate the minor influence of an extended domain
wall on the coherence effects.
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(a) (b)

(c)

Figure 3. Calculated intensities of separate domains S2
l and S2

r (dashed lines, red and blue),
interference term Sint (solid line, green) and total intensity I (thick solid line, purple) for e = 0.064,
N = 100 and (a) k = 0, (b) k = 1. (c) is an enlarged section of (b).

3. Examples and discussion

In the following some examples are given to illustrate the features that follow from the results
derived above. To be specific, two examples of strains will be considered which apply to the
(improper) ferroelastic (ferroelectric) phase transition Pm3m → P4mm in PbTiO3 (Boysen
2005). At room temperature a = 3.902 Å, c = 4.152 Å (e = 0.064) and at 740 K a = 3.958 Å,
c = 4.007 Å (e = 0.012). From the condition following (9), Nek less than ≈1, coherence
effects should be strong for N ≈ 15 at room temperature and for N ≈ 80 at 740 K. For N
much larger than these they should be negligible. This is illustrated in figure 3 for e = 0.064
and N = 100. Here and in the following figures the dashed lines represent the individual
intensities from both domains S2

l and S2
r , the thin solid line the interference term Sint and the

thick solid line the total intensity I . All intensities are normalized with respect to the total
number of planes by division through (2N + 1)2. Figure 3(a) shows the result for k = 0 which
implies h = integer. Here, of course, Sint is very strong (cf (7)) and correctly leads to a final
Laue function of order 2N +1, as k = 0 corresponds to a projection along j, which is of course
well ordered. As expected, for k = 1 (figure 3(b)) I and the sum of S2

l and S2
r are almost

identical, although there are slight differences as seen in the magnified picture (figure 3(c)), too
small, however, to be observed experimentally. Figure 4 shows the case when N is reduced
to 15. For k = 1 (figure 4(a)) there is an additional strong central peak, which is mainly
due to Sint and not simply due to the superposition of S2

l and S2
r . Furthermore, the first side
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(a) (b)

(c) (d)

Figure 4. Same as figure 3 for e = 0.064, N = 15 and (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 9.

peaks of Sint have enough intensity to shift the positions of the proper domain peaks, and the
minima lead to an apparent sharpening of all peaks. As a consequence, from the appearance
of the total intensity pattern alone one may be led to the false conclusion that there are two
phases (tetragonal and cubic in our case), derive wrong lattice constants from the shifted peak
positions and a too large extension of the domains from the narrowed peak widths. For k = 2
(figure 4(b)) there is no central peak, but the proper domain peaks appear to be split, which
again may lead to the assumption of two phases or lower symmetry. For k = 3 (figure 4(c)) the
central peak reappears and the domain peaks remain split, i.e. a complicated five-peak structure
results, completely further obscuring the true situation. Only for very large values of k is the
‘normal’ two peak structure recovered (figure 4(d)).

While the previous case is certainly unrealistic with a very large strain and a very small
domain size of N only 15, very similar features result for other combinations of N and e
with roughly equal products Ne. So the smaller strain e = 0.012 allows larger and more
realistic values of N . Figure 5 shows the dependence on (large) variations of N for k = 2.
For N = 1000 there is a two-peak structure practically identical with the incoherent case, for
N = 100 a three-peak structure with the twin peaks roughly at the correct positions (leading
to the false conclusion of the coexistence of low- and high-symmetry phases) and for N = 15
only one peak at the central position (leading to the false conclusion that the material is in
the high-symmetry phase). Note again that in the latter case the peak is much sharper than
the simple superposition of S2

l and S2
r wrongly suggesting even larger domains of the high-

symmetry phase. Figure 6(a) shows the situation for a small variation of N around N = 50. As
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(a) (b)

(c)

Figure 5. Same as figure 3 for e = 0.012, k = 1 and (a) N = 1000, (b) N = 100, (c) N = 15.

(a) (b)

Figure 6. Same as figure 3 for e = 0.012, N = 50 and (a) k = 2, (b) k = 4. In (a) the curves for
S2

l , S2
r and Sint are omitted and the total intensity is shown for N = 47, 48, 50, 51, 52 and 53 (from

top to bottom at the central peak). The thick line is the average and it hides the N = 50 line. The
lines for N < 50 have been dashed to make them visible near the main peaks.

is seen, the height of the central peak is very sensitive to the exact value of N , while the split
peaks are hardly affected visually. The middle (thick) line is in fact the average over all lines
from N = 47 to 53. It covers the N = 50 line almost completely, i.e. a narrow distribution
of domain sizes does not smear out the interference effects significantly. This particular value

8
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(a)

(b)

Figure 7. Experimental powder patterns (neutron diffraction, λ = 1.5943 Å) showing the
022l/220r (a) and 133l/331r (b) reflection groups (tetragonal indices).

of N has been chosen because the corresponding peak structure is reminiscent of that observed
in an actual neutron powder diffraction measurement on PbTiO3 at 740 K. Figure 7(a) shows
the 022l/220r pair (tetragonal indices) which corresponds to h0 = 1 and k = 2 (see (2) and
figure 1(b)). The central peak has previously been assigned to the cubic phase coexisting with
the tetragonal one at this temperature, but the comparison with figure 6 suggests that it could
as well be an interference peak, as argued above. Note, however, that figure 6 refers to the
reciprocal lattice, while figure 7 shows the powder average along 2�. A similar three-peak
structure was observed for the 133l/331r pair (figure 7(b)). In this case adjacent twin reflection
pairs are for example 133̄l/331r and 3̄31l/133r, which correspond to h0 = 2, k = −2 and
h0 = −1, k = 4, respectively. Hence, two different forms of the interference pattern (those for

9
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(a) (b)

Figure 8. Comparison of total intensities with (solid lines, red) and without (dashed lines, blue)
extended domain wall with Nw = 10 for e = 0.012, N = 50 and for (a) k = 2 and (b) k = 4.

k = −2 and 4, respectively; cf figures 6(a) and (b)) are superimposed for these symmetrically
equivalent reflections, thus further complicating the analysis of the powder patterns.

The different widths of the peaks noticeable in figure 7 have been assigned to the strain
variation within the domain wall by Boysen (2005). From this analysis a ratio L/W = N/Nw

of about 5 may be estimated at 740 K. According to this, figure 8 shows the alterations due to
a finite domain wall width with Nw = 10. As expected, some intensity is shifted towards the
centre, but the dominant influence of the interference term persists.

4. Conclusions

It has been shown that coherence effects may lead to significant modifications of the diffraction
pattern, if domain structures occur on a mesoscopic scale. For small strains critical domain
sizes may be as large as several hundreds of angstroms, which are not uncommon in real
systems (Salje 1990). As mentioned, for a reliable interpretation of experimental data the
structure factor variation along h and the smearing due to instrumental resolution have to be
taken into account; both of which, however, will not conceal the coherence effects as long as
they are as dominant, as in some of the examples above. Published assignments to multiple
phases and higher or lower symmetries, as well as derived lattice constants and domain sizes,
may have to be reconsidered under these aspects. In principle, they may easily be distinguished
by following the scattering vector dependence of the reflections, since the coherence effects
depend only on k, while the other cases have different index dependence. In practice, however,
this may be not that easy because of limited instrumental resolution. In fact, in the example of
the powder measurements of PbTiO3 presented above it seems that there is indeed a coexistence
of a cubic and a tetragonal phase, although from an estimation of the actual domain sizes and
wall widths interference effects should be remarkable, unless they are destroyed by other effects
like those mentioned in the introduction. On the other hand, if coherence effects can be detected
unambiguously, they would allow a determination of both N and Nw and not only of the ratio
N/Nw as in the statistical approaches of Taylor and Swainson (1998) and Boysen (2005).

The coherence effects are particularly serious when trying to interpret powder patterns,
where small grain sizes tend to produce small extensions of the domains. Although these
are usually much larger in single crystals, the decreasing and vanishing strains approaching
ferroelastic phase transitions should induce such effects in this case too, at least close to Tc.
Furthermore, mesoscopic domain structures arising from other processes, such as exsolution,

10
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can lead to similar effects. As an example, the characteristic distribution of sharp and
diffuse intensities observed in single-crystal x-ray diffraction experiments on enstatite has
previously been interpreted qualitatively by out-of-phase lamellar domains of orthoenstatite
(with a domain size of about 60 Å) intergrown with single layers of clinoenstatite (Boysen et al
1991). While trying to interpret recent more extended new data with this model quantitatively,
problems have been encountered which are probably due to neglecting the coherence terms.
Work is in progress to solve these problems. In summary, much more effort is required, in
particular in the powder case, to carefully analyse one’s data and finally arrive at unambiguous
and sound conclusions. Moreover, further work is needed to investigate the possible reasons
which seem to destroy the coherence effects in many real systems.
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